EXERCISES [MAI 2.2]

QUADRATICS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

	$f(x) = 2x^2 - 12x + 10$	$f(x) = 2x^2 - 12x + 18$	$f(x) = 2x^2 - 12x + 23$
y-intercept	<i>y</i> = 10	<i>y</i> = 18	<i>y</i> = 23
Roots	1, 5	3 (double),	No real roots,
Factorisation (if possible)	f(x) = 2(x-1)(x-5)	$f(x) = 2(x-3)^2$	No factorization
axis of symmetry	<i>x</i> = 3	<i>x</i> = 3	<i>x</i> = 3
Vertex	V(3,-8)	V(3,0)	V(3,5)
Vertex form $f(x) = a(x-h)^2 + k$	$f(x) = 2(x-3)^2 - 8$	$f(x) = 2(x-3)^2$	$f(x) = 2(x-3)^2 + 5$
Solve $f(x) \ge 0$	$x \le 1$ or $x \ge 5$	$x \in R$	$x \in R$
Solve $f(x) > 0$	x < 1 or $x > 5$	$x \in R - \{3\}$	$x \in R$
Solve $f(x) \le 0$	$1 \le x \le 5$	<i>x</i> = 3	No solutions (It is always positive)
Solve $f(x) < 0$	1 < <i>x</i> < 5	No solutions (It is always positive or 0)	No solutions (It is always positive)

2. (a) (i) x = 10 x = 20(ii) y = 4(x-10)(x-20)

(b) (i) (15,-100)

(ii)
$$y = 4(x-15)^2 - 100$$

(iii) x = 15

(iv)
$$y_{\min} = -100$$

- (c) y = 800
- (d) ٦ y 900 800-700-600-500-400-300-200 100х 30 20 -100-10 -200x=15

3. (a) (i)
$$x = 10 \ x = 20$$

(ii) $y = -4(x-10)(x-20)$
(b) (i) (15, 100)
(ii) $y = -4(x-15)^2 + 100$
(iii) $x = 15$
(iv) $y_{max} = 100$
(c) $y = -800$
(d)
 $\begin{array}{r} 200 \ y = -800 \ y = -120 \$

(ii) substituting x = 2 into f(x), y = 8

10.

Expression	+ - 0
а	_
С	_
b^2-4ac	0
$-\frac{b}{2a}$	+
b	+

11.

Expression	+ - 0
а	_
С	0
b^2-4ac	+
$-\frac{b}{2a}$	+
b	+

12.

Expression	+ - 0
а	+
С	_
b^2-4ac	+
$-\frac{b}{2a}$	+
Ь	_

13. (a) Vertex is (3, 5)

(b)
$$f(x) = (x-3)^2 + 5$$

14. (a)
$$f(x) = 2(x-2)^2 - 3$$
 i.e. $a = 2, p = 2, q = -3$
(b) Minimum value of $f(x) = -3$ OR Minimum value occurs at $(2, -3)$

- **15.** (a) Vertex is (-0.5, 1.5)
 - (b) $f(x) = 2(x+0.5)^2 + 1.5$

16. (a) Vertex is
$$(-0.5, -0.75)$$

(b)
$$f(x) = -(x+0.5)^2 - 0.75$$

