EXERCISES [MAI 2.2]

QUADRATICS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

	$f(x)=2 x^{2}-12 x+10$	$f(x)=2 x^{2}-12 x+18$	$f(x)=2 x^{2}-12 x+23$
y-intercept	$y=10$	$y=18$	$y=23$
Roots	1,5	3 (double),	No real roots,
Factorisation (if possible)	$f(x)=2(x-1)(x-5)$	$f(x)=2(x-3)^{2}$	No factorization
axis of symmetry	$x=3$	$\mathrm{~V}(3,-8)$	$x=3$
Vertex	$f(x)=2(x-3)^{2}-8$	$f(x)=2(x-3)^{2}$	$f(x)=2(x-3)^{2}+5$
Vertex form $f(x)=a(x-h)^{2}+k$	$x \leq 1$ or $x \geq 5$	$x \in R$	$x \in R$
Solve $f(x) \geq 0$	$x<1$ or $x>5$	$x \in R-\{3\}$	$x \in R$
Solve $f(x)>0$	$1 \leq x \leq 5$	$x=3$	No solutions (It is always positive)
Solve $f(x) \leq 0$	$1<x<5$	No solutions (It is always positive)	
Solve $f(x)<0$	(It is always positive or 0)		

2. (a) (i) $x=10 \quad x=20$
(ii) $y=4(x-10)(x-20)$
(b) (i) $(15,-100)$
(ii) $y=4(x-15)^{2}-100$
(iii) $x=15$
(iv) $y_{\text {min }}=-100$
(c) $y=800$
(d)

3. (a) (i) $x=10 \quad x=20$
(ii) $y=-4(x-10)(x-20)$
(b) (i) $(15,100)$
(ii) $y=-4(x-15)^{2}+100$
(iii) $x=15$
(iv) $y_{\text {max }}=100$
(c) $y=-800$
(d)

4. (a) $x=4$
(b) $y=12$ since $(8,12)$ is symmetric to $(0,12)$ about $x=4$
(c) $y=5$ since $(1,5)$ is symmetric to $(7,5)$ about $x=4$
5. (a) $x=5$ or $x=-2$
(b) $x^{2}-3 x-10=(x-5)(x+2)$
6. (a) $p=-\frac{1}{2}, q=2$ or vice versa
(b) By symmetry C is midway between $p, q \Rightarrow x$-coordinate is $\frac{-1 / 2+2}{2}=\frac{3}{4}$
7. (a) intercepts are $(-1,0)$ and $(2,0)(\operatorname{accept} x=-1, x=2)$
(b) $x_{v}=\frac{x_{1}+x_{2}}{2}, x_{v}=-\frac{b}{2 a}$,
$x_{v}=0.5$
8. $(7-x)(1+x)=0 \Leftrightarrow x=7$ or $x=-1$

B: $x=\frac{7+-1}{2}=3$;
$y=(7-3)(1+3)=16$
9. (a) 4 and $0(\operatorname{accept}(4,0)$ and $(0,0)$, or $x=4, x=0)$
(b) (i) $x=2$ (must be equation)
(ii) substituting $x=2$ into $f(x), y=8$
10.

Expression	+-0
a	-
c	-
$b^{2}-4 a c$	0
$-\frac{b}{2 a}$	+
b	+

11.

Expression	+-0
a	-
c	0
$b^{2}-4 a c$	+
$-\frac{b}{2 a}$	+
b	+

12.

Expression	+-0
a	+
c	-
$b^{2}-4 a c$	+
$-\frac{b}{2 a}$	+
b	-

13. (a) Vertex is $(3,5)$
(b) $f(x)=(x-3)^{2}+5$
14. (a) $f(x)=2(x-2)^{2}-3$ i.e. $a=2, p=2, q=-3$
(b) Minimum value of $f(x)=-3 \quad$ OR Minimum value occurs at $(2,-3)$
15. (a) Vertex is $(-0.5,1.5)$
(b) $f(x)=2(x+0.5)^{2}+1.5$
16. (a) Vertex is $(-0.5,-0.75)$
(b) $f(x)=-(x+0.5)^{2}-0.75$
17. $(2,-3)$ and $(6,9)$

18. $(4,-1)$

19. no points of intersection

20. $(-2,1)$ and $(2,1)$

